Sebuahkotak berisi 4 bola kuning dan 6 bola biru. Jjika diambil 2 buah bola sekaligus secara acak maka peluang terambil kedua bola berwarna sama adalah.. A. 2/15. B. 3/15. C. 5/15. D. 7/15 . E. 8/15. Dalam sebuah kotak terdapat 6 bola merah dan 4 bola putih. Dari dalam kotak diambil sebuah bola sebanyak 3 kali pengambilan tanpa PertanyaanSebuah kotak berisi 2 bola merah dan 6 bola putih. Dari dalam kotak diambil satu bola berturut-turut dua kali tanpa pengembalian. Peluang terambil bola pertama merah dan bola kedua putih adalah ....Sebuah kotak berisi 2 bola merah dan 6 bola putih. Dari dalam kotak diambil satu bola berturut-turut dua kali tanpa pengembalian. Peluang terambil bola pertama merah dan bola kedua putih adalah ....SIMahasiswa/Alumni Universitas LampungJawabanpeluang terambil bola pertama merah dan bola kedua putih adalah 14 3 ​ .peluang terambil bola pertama merah dan bola kedua putih adalah .PembahasanTersedia 2 bola merah dan 6 bola putih. Pengambilan satu-persatu tanpa pengembalian. Percobaan pertama terambil bola merah. Ruang sampel = 8. Bola yang terambil tidak dikembalikan, sehingga ruang sampel berkurang 1 yaitu Percobaan kedua terambil bola putih. Ruang sampel = . Peluang terambil bola pertama merah dan bola kedua putih Dengan demikian, peluang terambil bola pertama merah dan bola kedua putih adalah 14 3 ​ .Tersedia 2 bola merah dan 6 bola putih. Pengambilan satu-persatu tanpa pengembalian. Percobaan pertama terambil bola merah. Ruang sampel = 8. Bola yang terambil tidak dikembalikan, sehingga ruang sampel berkurang 1 yaitu Percobaan kedua terambil bola putih. Ruang sampel = . Peluang terambil bola pertama merah dan bola kedua putih Dengan demikian, peluang terambil bola pertama merah dan bola kedua putih adalah . Perdalam pemahamanmu bersama Master Teacher di sesi Live Teaching, GRATIS!37rb+Yuk, beri rating untuk berterima kasih pada penjawab soal!JJonathanAndreas Pembahasan tidak menjawab soal Sebuahkotak berisi 4 bola merah, 5 bola putih, dan 6 bola biru. Dari kotak tersebut a. Jawaban paling sesuai dengan pertanyaan 12. Sebuah kotak berisi 4 bola merah, 5 bola putih, dan 6 bola biru. Sebuah kotak berisi 4 bola merah, 5 bola putih, dan 6 bola biru. Dari kotak tersebut a. Jawaban paling sesuai dengan pertanyaan 12. Sebuah kotak
Kelas 12 SMAPeluang WajibKombinasiSebuah kotak berisi 6 bola merah dan 4 bola putih. Dari dalam kotak diambil 3 bola sekaligus. Banyak cara pengambilan sedemikian hingga sedikitnya terdapat 2 bola putih adalah.... .KombinasiPeluang WajibPROBABILITASMatematikaRekomendasi video solusi lainnya0235Dari 10 siswa yang terlambat datang ke sekolah, akan dipi...0153Dari angka 1 sampai dengan 9 akan dibentuk bilangan tiga ...0129Dalam pemilihan murid untuk lomba tari di suatu sekolah t...0536Dalam sebuah kantong terdapat 6 bola hitam dan 4 bola mer...Teks videoDisini kita punya pertanyaan tentang kaidah pencacahan atau counting jadi ada sebuah kotak isinya adalah 6 bola merah dan 4 bola putih dan diambil 3 bola sekaligus jadi yang ditanyakan adalah banyak cara pengambilan sedemikian hingga sedikitnya terdapat 2 bola putih yang di bahasa ini sedikitnya terdapat 2 bola putih itu artinya kita bisa mendapatkan dua putih aku merah karena di sini bolanya hanya berwarna merah dan putih saja atau 3 butir ya pengambilan 3 bola dalam kasus ini ini adalah bentuk dari Kombinasi yang bisa kita hitung sebagai kombinasi mengangkat Mengapa kombinasi karena disini urutan tidak diperhatikan ya urutannya? Perhatikan ini maksudnya adalah sebagai berikut. Jika sebagai ilustrasi contoh saya mengambil 3 bola dan saya dapat putih putih merah ini akan sama saja dengan diambil 3 bola lalu saya lihat Ternyata saya dapat merah putih jadi urutan di sini tidak diperhatikan ya di ini sama-sama saja, maka dari itu kita akan gunakan kombinasi kombinasi dari rokok jika kita ambil dari n objek itu adalah n kombinasi R yang adalah n faktorial dibagi n min 1 faktorial dikali 0 faktorial ya Nah sekarang kita mempunyai dua buah kasus yah ini kasus pertama dan kedua yang dihubungkan dengan tanda hubung atau nanti dari kasus kasus kedua karena dihubungkan dengan tanda hubung atau berarti kita jumlahkan seluruhnya yang untuk kasus pertama kita menginginkan 2 putih dan 1 merah artinya dari 6 Bola merah kita inginkan 1 jadi 6 kombinasi 1 dan dari bola putih ada empat kita inginkan dua ya di untuk kata hubung dan ini kita lakukan perkalian untuk kata hubung atau nanti kita akan dijumlahkan nya 6 kombinasi 1 artinya 6 faktorial per 5 faktorial * 1 faktorial ya karena email-nya berarti 6 min 1 itu 5 4 C 2 berarti 4 faktorial per 2 faktorial 2 faktorial ini adalah 6 * 5 faktorial per 5 faktorial per 1 faktorial itu satu tidak saya tulis empat faktornya adalah 4 x 3 per x 2 Ada 2 faktorial disini dan dua faktor yaitu 2 * 1 yang adalah 2. Jadi ini bisa kita hilangkan karya ini saling membagi dan 4 / 2 itu 2 jadi kita peroleh di sini Sisanya adalah 6 * 2 * 3 yang adalah 36 cara baru untuk kasus kedua kita menginginkan tiga-tiganya putih maka dari itu kita inginkan dari 4 bola putih diambil 3 dan untuk bola merah tidak ada Jadi tidak akan kita tulis dan 4 C 3 adalah 4 faktorial dibagi 4 kurang 3. Tentukan tutorial dan ini 3 faktorial ini adalah 4 * 3 faktorial dibagi 1 faktorial 1 tidak tertulis lagi ini 3 faktorial ya jadi sisanya adalah 4. Maka dari itu penjumlahan dari kasus pertama dan kasus kedua ini adalah 36 + yang adalah 40 cara jadi jawaban yang tepat adalah yang sekian sampai jumpa di Pertanyaan selanjutnyaSukses nggak pernah instan. Latihan topik lain, yuk!12 SMAPeluang WajibKekongruenan dan KesebangunanStatistika InferensiaDimensi TigaStatistika WajibLimit Fungsi TrigonometriTurunan Fungsi Trigonometri11 SMABarisanLimit FungsiTurunanIntegralPersamaan Lingkaran dan Irisan Dua LingkaranIntegral TentuIntegral ParsialInduksi MatematikaProgram LinearMatriksTransformasiFungsi TrigonometriPersamaan TrigonometriIrisan KerucutPolinomial10 SMAFungsiTrigonometriSkalar dan vektor serta operasi aljabar vektorLogika MatematikaPersamaan Dan Pertidaksamaan Linear Satu Variabel WajibPertidaksamaan Rasional Dan Irasional Satu VariabelSistem Persamaan Linear Tiga VariabelSistem Pertidaksamaan Dua VariabelSistem Persamaan Linier Dua VariabelSistem Pertidaksamaan Linier Dua VariabelGrafik, Persamaan, Dan Pertidaksamaan Eksponen Dan Logaritma9 SMPTransformasi GeometriKesebangunan dan KongruensiBangun Ruang Sisi LengkungBilangan Berpangkat Dan Bentuk AkarPersamaan KuadratFungsi Kuadrat8 SMPTeorema PhytagorasLingkaranGaris Singgung LingkaranBangun Ruang Sisi DatarPeluangPola Bilangan Dan Barisan BilanganKoordinat CartesiusRelasi Dan FungsiPersamaan Garis LurusSistem Persamaan Linear Dua Variabel Spldv7 SMPPerbandinganAritmetika Sosial Aplikasi AljabarSudut dan Garis SejajarSegi EmpatSegitigaStatistikaBilangan Bulat Dan PecahanHimpunanOperasi Dan Faktorisasi Bentuk AljabarPersamaan Dan Pertidaksamaan Linear Satu Variabel6 SDBangun RuangStatistika 6Sistem KoordinatBilangan BulatLingkaran5 SDBangun RuangPengumpulan dan Penyajian DataOperasi Bilangan PecahanKecepatan Dan DebitSkalaPerpangkatan Dan Akar4 SDAproksimasi / PembulatanBangun DatarStatistikaPengukuran SudutBilangan RomawiPecahanKPK Dan FPB12 SMATeori Relativitas KhususKonsep dan Fenomena KuantumTeknologi DigitalInti AtomSumber-Sumber EnergiRangkaian Arus SearahListrik Statis ElektrostatikaMedan MagnetInduksi ElektromagnetikRangkaian Arus Bolak BalikRadiasi Elektromagnetik11 SMAHukum TermodinamikaCiri-Ciri Gelombang MekanikGelombang Berjalan dan Gelombang StasionerGelombang BunyiGelombang CahayaAlat-Alat OptikGejala Pemanasan GlobalAlternatif SolusiKeseimbangan Dan Dinamika RotasiElastisitas Dan Hukum HookeFluida StatikFluida DinamikSuhu, Kalor Dan Perpindahan KalorTeori Kinetik Gas10 SMAHukum NewtonHukum Newton Tentang GravitasiUsaha Kerja Dan EnergiMomentum dan ImpulsGetaran HarmonisHakikat Fisika Dan Prosedur IlmiahPengukuranVektorGerak LurusGerak ParabolaGerak Melingkar9 SMPKelistrikan, Kemagnetan dan Pemanfaatannya dalam Produk TeknologiProduk TeknologiSifat BahanKelistrikan Dan Teknologi Listrik Di Lingkungan8 SMPTekananCahayaGetaran dan GelombangGerak Dan GayaPesawat Sederhana7 SMPTata SuryaObjek Ilmu Pengetahuan Alam Dan PengamatannyaZat Dan KarakteristiknyaSuhu Dan KalorEnergiFisika Geografi12 SMAStruktur, Tata Nama, Sifat, Isomer, Identifikasi, dan Kegunaan SenyawaBenzena dan TurunannyaStruktur, Tata Nama, Sifat, Penggunaan, dan Penggolongan MakromolekulSifat Koligatif LarutanReaksi Redoks Dan Sel ElektrokimiaKimia Unsur11 SMAAsam dan BasaKesetimbangan Ion dan pH Larutan GaramLarutan PenyanggaTitrasiKesetimbangan Larutan KspSistem KoloidKimia TerapanSenyawa HidrokarbonMinyak BumiTermokimiaLaju ReaksiKesetimbangan Kimia Dan Pergeseran Kesetimbangan10 SMALarutan Elektrolit dan Larutan Non-ElektrolitReaksi Reduksi dan Oksidasi serta Tata Nama SenyawaHukum-Hukum Dasar Kimia dan StoikiometriMetode Ilmiah, Hakikat Ilmu Kimia, Keselamatan dan Keamanan Kimia di Laboratorium, serta Peran Kimia dalam KehidupanStruktur Atom Dan Tabel PeriodikIkatan Kimia, Bentuk Molekul, Dan Interaksi Antarmolekul

Sebuahkotak berisi 6 bola merah dan 4 bola biru. Jika diambil 2 bola satu per satu tanpa pengembalian, tentukan peluang bola yang terambil berturut-turut berwarna : a. biru - merah b. merah - merah c. merah - biru . Penyelesaian : Banyak bola sebelum pengambilan adalah 6 bola merah + 4 bola biru = 10 bola. a. Pada pengambilan pertama

Kelas 12 SMAPeluang WajibPeluang Kejadian Saling BebasSebuah kotak berisi 6 bola merah dan 4 bola putih. Dari kotak itu diambil 2 bola secara acak. Tiap kali kedua bola itu diambil, dikembalikan ke dalam kotak. Jika pengambilan itu dilakukan sebanyak 90 kali, maka frekuensi harapan yang terambil satu bola merah satu bola putih adalah ....Peluang Kejadian Saling BebasPeluang Teoritis dan Frekuensi HarapanPeluang WajibPELUANGPROBABILITASSTATISTIKAMatematikaRekomendasi video solusi lainnya0212Dalam percobaan melambungkan 3 mata uang logam, peluang m...0210Pada pelemparan dua koin bersama, peluang muncul masing-m...0223Terdapat 2 kotak yang masing-masing berisi bola hitam dan...0332Dalam supermarket terdapat 12 ibu-ibu dan 4 remaja yang s...Teks videokalau komplain di sini kita diberikan 6 bola merah dan bola itu adalah sama dengan bola kita perlu mencari frekuensi harapan terambil 1 bola merah dan 1 bola putih Artinya kita kita cari dulu banyak cara untuk mengambil dari 10 C2 kita gunakan kombinasi bukan permutasi karena pada pengambilan ini tidak memperhatikan urutan jika kita mengambil bola Merah 2 bola putih sama saja kita mengambil dulu baru bola merah dari sama dengan 10 faktorial dibagi dengan n dikurang k berarti 10 dikurang 2 adalah 8 faktorial * 9 faktorial 2 faktorial adalah 10 dikalikan 9 dikalikan 8 faktorial dibagi dengan 8 faktorial dikali X 2 faktorial per 8 faktorial = 10 dikalikan dengan 9 dibagi dengan 2 faktorial 2 dikalikan 1 B Core saja 1 menjadi 45 orang kita. Cari banyak cara mengambil 1 bola merah dan 6 Bola merah yang tersedia kita mencari cara mengambil 1 bola yang terdiri dari 6 tetap menggunakan kombinasi bukan permutasi karena tidak memperhatikan urutan apa pun maka = 6 faktorial dibagi dengan 6 dikurang 1 adalah 5 faktorial dikali 1 faktorial faktorial = 6 dikalikan 55 faktorial dikalikan dengan 1 faktorial adalah 1. Maka hasilnya adalah 6. Sekarang kita cari banyak cara mengambil 1 bola putih. Dari 4 dikurang 1 adalah dikalikan dengan 1 = 4 * 3 faktorial dibagi dengan 3 faktorial dikalikan dengan 1 faktorial adalah 1 = 4 karung kita cari banyak cara mengambil 1 bola merah dan 1 bola putih. Jika bunga merah jika kita misalkan bola merah adalah M1 sampai 6 sedangkan bola putih adalah p 1 sampai 4 maka ketika kita mengambil M1 kita dapat mengambil 1/2 atau maka ada 4 pilihan untuk m1 m2 ada 4 pilihan 2 dan seterusnya sampai 6 memiliki 4 pilihan untuk bola putih nya karena untuk setiap bola Merah terdapat empat cara pengambilan bola kita perlu mengalikan banyaknya cara mengambil bola merah banyaknya cara mengambil bola putih bola merah banyak cara mengambil 1 bola merah dan kalikan dengan 4 = 24 orang tidak dapat mencari peluang pengambilan 1 bola merah dan 1 bola putih. Banyaknya cara pengambilan 1 bola merah dari India 45 jadinya adalah peluangnya sekarang kita pernah mencari frekuensi harapan yang banyak Harapannya adalah 45 dikalikan dengan banyaknya pengulangan yang 90 x 2 adalah 8. Jadi frekuensi harapan a adalah 48 kali Sampai jumpa di Solo berikutnyaSukses nggak pernah instan. Latihan topik lain, yuk!12 SMAPeluang WajibKekongruenan dan KesebangunanStatistika InferensiaDimensi TigaStatistika WajibLimit Fungsi TrigonometriTurunan Fungsi Trigonometri11 SMABarisanLimit FungsiTurunanIntegralPersamaan Lingkaran dan Irisan Dua LingkaranIntegral TentuIntegral ParsialInduksi MatematikaProgram LinearMatriksTransformasiFungsi TrigonometriPersamaan TrigonometriIrisan KerucutPolinomial10 SMAFungsiTrigonometriSkalar dan vektor serta operasi aljabar vektorLogika MatematikaPersamaan Dan Pertidaksamaan Linear Satu Variabel WajibPertidaksamaan Rasional Dan Irasional Satu VariabelSistem Persamaan Linear Tiga VariabelSistem Pertidaksamaan Dua VariabelSistem Persamaan Linier Dua VariabelSistem Pertidaksamaan Linier Dua VariabelGrafik, Persamaan, Dan Pertidaksamaan Eksponen Dan Logaritma9 SMPTransformasi GeometriKesebangunan dan KongruensiBangun Ruang Sisi LengkungBilangan Berpangkat Dan Bentuk AkarPersamaan KuadratFungsi Kuadrat8 SMPTeorema PhytagorasLingkaranGaris Singgung LingkaranBangun Ruang Sisi DatarPeluangPola Bilangan Dan Barisan BilanganKoordinat CartesiusRelasi Dan FungsiPersamaan Garis LurusSistem Persamaan Linear Dua Variabel Spldv7 SMPPerbandinganAritmetika Sosial Aplikasi AljabarSudut dan Garis SejajarSegi EmpatSegitigaStatistikaBilangan Bulat Dan PecahanHimpunanOperasi Dan Faktorisasi Bentuk AljabarPersamaan Dan Pertidaksamaan Linear Satu Variabel6 SDBangun RuangStatistika 6Sistem KoordinatBilangan BulatLingkaran5 SDBangun RuangPengumpulan dan Penyajian DataOperasi Bilangan PecahanKecepatan Dan DebitSkalaPerpangkatan Dan Akar4 SDAproksimasi / PembulatanBangun DatarStatistikaPengukuran SudutBilangan RomawiPecahanKPK Dan FPB12 SMATeori Relativitas KhususKonsep dan Fenomena KuantumTeknologi DigitalInti AtomSumber-Sumber EnergiRangkaian Arus SearahListrik Statis ElektrostatikaMedan MagnetInduksi ElektromagnetikRangkaian Arus Bolak BalikRadiasi Elektromagnetik11 SMAHukum TermodinamikaCiri-Ciri Gelombang MekanikGelombang Berjalan dan Gelombang StasionerGelombang BunyiGelombang CahayaAlat-Alat OptikGejala Pemanasan GlobalAlternatif SolusiKeseimbangan Dan Dinamika RotasiElastisitas Dan Hukum HookeFluida StatikFluida DinamikSuhu, Kalor Dan Perpindahan KalorTeori Kinetik Gas10 SMAHukum NewtonHukum Newton Tentang GravitasiUsaha Kerja Dan EnergiMomentum dan ImpulsGetaran HarmonisHakikat Fisika Dan Prosedur IlmiahPengukuranVektorGerak LurusGerak ParabolaGerak Melingkar9 SMPKelistrikan, Kemagnetan dan Pemanfaatannya dalam Produk TeknologiProduk TeknologiSifat BahanKelistrikan Dan Teknologi Listrik Di Lingkungan8 SMPTekananCahayaGetaran dan GelombangGerak Dan GayaPesawat Sederhana7 SMPTata SuryaObjek Ilmu Pengetahuan Alam Dan PengamatannyaZat Dan KarakteristiknyaSuhu Dan KalorEnergiFisika Geografi12 SMAStruktur, Tata Nama, Sifat, Isomer, Identifikasi, dan Kegunaan SenyawaBenzena dan TurunannyaStruktur, Tata Nama, Sifat, Penggunaan, dan Penggolongan MakromolekulSifat Koligatif LarutanReaksi Redoks Dan Sel ElektrokimiaKimia Unsur11 SMAAsam dan BasaKesetimbangan Ion dan pH Larutan GaramLarutan PenyanggaTitrasiKesetimbangan Larutan KspSistem KoloidKimia TerapanSenyawa HidrokarbonMinyak BumiTermokimiaLaju ReaksiKesetimbangan Kimia Dan Pergeseran Kesetimbangan10 SMALarutan Elektrolit dan Larutan Non-ElektrolitReaksi Reduksi dan Oksidasi serta Tata Nama SenyawaHukum-Hukum Dasar Kimia dan StoikiometriMetode Ilmiah, Hakikat Ilmu Kimia, Keselamatan dan Keamanan Kimia di Laboratorium, serta Peran Kimia dalam KehidupanStruktur Atom Dan Tabel PeriodikIkatan Kimia, Bentuk Molekul, Dan Interaksi Antarmolekul
Sebuahkotak berisi 5 bola merah, 4 bola putih,dan3bolabiru.Sebuahboladipilih secaraacakdarikotak,warnanyadicatat,dan kemudian bolanya dimasukkan kembali. Tentukan peluang bahwa dari 6 bola yang diambil secara acak dengan cara ini, 3 diantaranyaberwarnamerah,2adalahputih, dan1biru.
PertanyaanSuatu kotak berisi 6 bola merah dan 4 bola putih. Jika dari kotak diambil sebuah bola peluang bahwa yang terambil c. pertama merah dan yang kedua putih, jika pengambilan pertama tidak dikembalikan. d. pertama putihdan yang kedua merah, jika pengambilan pertama tidak kotak berisi 6 bola merah dan 4 bola putih. Jika dari kotak diambil sebuah bola peluang bahwa yang terambil c. pertama merah dan yang kedua putih, jika pengambilan pertama tidak dikembalikan. d. pertama putih dan yang kedua merah, jika pengambilan pertama tidak dikembalikan. ENMahasiswa/Alumni Institut Teknologi Sepuluh NopemberJawabanpeluang terambil pertama putih dan kedua merah adalah .peluang terambil pertama putih dan kedua merah adalah .PembahasanMisalkan adalah kejadian terambil bola merah, dan adalah kejadian terambil bola putih, maka Karena pengambilan kedua tanpa pengembalian, maka a. peluang terambil pertama merah dan kedua putih Dengan demikian peluang terambil pertama merah dan kedua putih adalah . b. peluang terambil pertama putih dan kedua merah Dengan demikian peluang terambil pertama putih dan kedua merah adalah .Misalkan adalah kejadian terambil bola merah, dan adalah kejadian terambil bola putih, maka Karena pengambilan kedua tanpa pengembalian, maka a. peluang terambil pertama merah dan kedua putih Dengan demikian peluang terambil pertama merah dan kedua putih adalah . b. peluang terambil pertama putih dan kedua merah Dengan demikian peluang terambil pertama putih dan kedua merah adalah . Perdalam pemahamanmu bersama Master Teacher di sesi Live Teaching, GRATIS!121Yuk, beri rating untuk berterima kasih pada penjawab soal!ASAku SatuIni yang aku cari!

JawabanKonsep Dasar Probabilitas. Soal 1. 1. Ada 3 kotak yaitu 1, 2, dan 3 yang masing-masing berisi bola merah dan putih, seperti yang dituliskan dalam tabel di bawah ini. Mula-mula satu kotak dipilih secara acak, kemudian dari kotak yang terpilih diambil 1 bola juga secara acak. Tiap kotak mempunyai kesempatan yang sama untuk terpilih.

Kelas 12 SMAPeluang WajibPeluang Kejadian Saling BebasSebuah kotak berisi 4 bola merah dan 6 bola putih. Dari kotak diambil dua bola sekaligus. Peluang bahwa kedua bola yang terambil terdiri atas 1 bola merah dan 1 bola putih adalah ....A. 1/24 B. 2/9 C. 8/15 D. 5/12 E. 6/15 Peluang Kejadian Saling BebasPeluang WajibPROBABILITASMatematikaRekomendasi video solusi lainnya0229Tujuh lembar kartu yang terdiri dari 2 kartu berwarna ku...0223Terdapat 2 kotak yang masing-masing berisi bola hitam dan...0209Dua buah dadu dilempar undi satu kali. Peluang muncul mat...0332Dalam supermarket terdapat 12 ibu-ibu dan 4 remaja yang s...Teks videodi sini ada soal tentang peluang peluang dari suatu kejadian a ini sangat suka dengan banyaknya kejadian tersebut dibagi banyak semesta untuk kombinasi ditulis NCR atau cnr yang artinya dari dipilih sebanyak dengan cara memilih tanpa memperhatikan urutan ini = n faktorial per n faktorial dikali n kurang R waktu untuk faktorial sebagai contoh 4 faktorial artinya 4 * 3 * 2 * 1 pada soal ada sebuah kotak terdiri dari 4 bola merah dan 6 Bola putih dari kotak diambil 2 bola sekaliguspeluang terambilnya 1 bola merah dan 1 bola putih berarti peluang terambilnya 1 bola merah dan 1 bola putih adalah banyaknya cara untuk memilih 1 bola merah itu berarti dari 4 dipilih satu pakai kombinasi dikali kombinasi dari 6 yang putih dipilih satu per seluruhnya dari 10 diambil 2 perlu diingat disini agar perhitungan kita jadi lebih cepat ini sama dengan n Jadi kalau airnya 1 Maka hasilnyaberarti ini = C4 1 berarti 461 berarti 62 berarti 10 faktorial per 2 faktorial dikali 10 - 28 faktorial = 4 * 6 * yang di bawah di balik berarti 2 faktorial * 8 faktorial per 10 faktorial kemudian 4 * 6 * 2 faktorial 2 * 18 faktorial per 10 faktorial 10 * 9 * 8 faktorial per 8 faktorial bisa kita coret / 329 / 332 / 2 1 10 / 25 berarti ini sama dengan yang di atas 4 * 28jawabannya adalah C Sampai ketemu di selanjutnyaSukses nggak pernah instan. Latihan topik lain, yuk!12 SMAPeluang WajibKekongruenan dan KesebangunanStatistika InferensiaDimensi TigaStatistika WajibLimit Fungsi TrigonometriTurunan Fungsi Trigonometri11 SMABarisanLimit FungsiTurunanIntegralPersamaan Lingkaran dan Irisan Dua LingkaranIntegral TentuIntegral ParsialInduksi MatematikaProgram LinearMatriksTransformasiFungsi TrigonometriPersamaan TrigonometriIrisan KerucutPolinomial10 SMAFungsiTrigonometriSkalar dan vektor serta operasi aljabar vektorLogika MatematikaPersamaan Dan Pertidaksamaan Linear Satu Variabel WajibPertidaksamaan Rasional Dan Irasional Satu VariabelSistem Persamaan Linear Tiga VariabelSistem Pertidaksamaan Dua VariabelSistem Persamaan Linier Dua VariabelSistem Pertidaksamaan Linier Dua VariabelGrafik, Persamaan, Dan Pertidaksamaan Eksponen Dan Logaritma9 SMPTransformasi GeometriKesebangunan dan KongruensiBangun Ruang Sisi LengkungBilangan Berpangkat Dan Bentuk AkarPersamaan KuadratFungsi Kuadrat8 SMPTeorema PhytagorasLingkaranGaris Singgung LingkaranBangun Ruang Sisi DatarPeluangPola Bilangan Dan Barisan BilanganKoordinat CartesiusRelasi Dan FungsiPersamaan Garis LurusSistem Persamaan Linear Dua Variabel Spldv7 SMPPerbandinganAritmetika Sosial Aplikasi AljabarSudut dan Garis SejajarSegi EmpatSegitigaStatistikaBilangan Bulat Dan PecahanHimpunanOperasi Dan Faktorisasi Bentuk AljabarPersamaan Dan Pertidaksamaan Linear Satu Variabel6 SDBangun RuangStatistika 6Sistem KoordinatBilangan BulatLingkaran5 SDBangun RuangPengumpulan dan Penyajian DataOperasi Bilangan PecahanKecepatan Dan DebitSkalaPerpangkatan Dan Akar4 SDAproksimasi / PembulatanBangun DatarStatistikaPengukuran SudutBilangan RomawiPecahanKPK Dan FPB12 SMATeori Relativitas KhususKonsep dan Fenomena KuantumTeknologi DigitalInti AtomSumber-Sumber EnergiRangkaian Arus SearahListrik Statis ElektrostatikaMedan MagnetInduksi ElektromagnetikRangkaian Arus Bolak BalikRadiasi Elektromagnetik11 SMAHukum TermodinamikaCiri-Ciri Gelombang MekanikGelombang Berjalan dan Gelombang StasionerGelombang BunyiGelombang CahayaAlat-Alat OptikGejala Pemanasan GlobalAlternatif SolusiKeseimbangan Dan Dinamika RotasiElastisitas Dan Hukum HookeFluida StatikFluida DinamikSuhu, Kalor Dan Perpindahan KalorTeori Kinetik Gas10 SMAHukum NewtonHukum Newton Tentang GravitasiUsaha Kerja Dan EnergiMomentum dan ImpulsGetaran HarmonisHakikat Fisika Dan Prosedur IlmiahPengukuranVektorGerak LurusGerak ParabolaGerak Melingkar9 SMPKelistrikan, Kemagnetan dan Pemanfaatannya dalam Produk TeknologiProduk TeknologiSifat BahanKelistrikan Dan Teknologi Listrik Di Lingkungan8 SMPTekananCahayaGetaran dan GelombangGerak Dan GayaPesawat Sederhana7 SMPTata SuryaObjek Ilmu Pengetahuan Alam Dan PengamatannyaZat Dan KarakteristiknyaSuhu Dan KalorEnergiFisika Geografi12 SMAStruktur, Tata Nama, Sifat, Isomer, Identifikasi, dan Kegunaan SenyawaBenzena dan TurunannyaStruktur, Tata Nama, Sifat, Penggunaan, dan Penggolongan MakromolekulSifat Koligatif LarutanReaksi Redoks Dan Sel ElektrokimiaKimia Unsur11 SMAAsam dan BasaKesetimbangan Ion dan pH Larutan GaramLarutan PenyanggaTitrasiKesetimbangan Larutan KspSistem KoloidKimia TerapanSenyawa HidrokarbonMinyak BumiTermokimiaLaju ReaksiKesetimbangan Kimia Dan Pergeseran Kesetimbangan10 SMALarutan Elektrolit dan Larutan Non-ElektrolitReaksi Reduksi dan Oksidasi serta Tata Nama SenyawaHukum-Hukum Dasar Kimia dan StoikiometriMetode Ilmiah, Hakikat Ilmu Kimia, Keselamatan dan Keamanan Kimia di Laboratorium, serta Peran Kimia dalam KehidupanStruktur Atom Dan Tabel PeriodikIkatan Kimia, Bentuk Molekul, Dan Interaksi Antarmolekul
\n \n\n \nsebuah kotak berisi 4 bola merah dan 6 bola putih
Sebuahbola diambil secara acak dari kotak yang berisi 6 bola merah, 4 bola putih dan 5 bola biru. Berapa peluang bahwa bola itu : a. merah b. biru c. putih d. bukan biru 47. Pada dompet Siska ada 7 lembar uang Rp 10.000,- , 4 lembar Rp. 20.000,00 dan 3 lembar Rp 5.000,Siska membeli sebuah buku seharga Rp 30.000,-. Dalam sebuah kotak berisi Kelas 12 SMAPeluang WajibPeluang Kejadian TunggalSebuah kotak berisi 6 bola merah, 5 bola biru, dan 4 bola putih. Dari kotak tersebut diambil tiga bola sekaligus secara acak. Tentukan peluang terambilnya bola berwarna; a. semua merah, b. semua putih, c. yang berlainan, dan d. paling sedikit dua bola biru;Peluang Kejadian TunggalKombinasiPeluang WajibPROBABILITASMatematikaRekomendasi video solusi lainnya0219Dari seperangkat kartu bridge diambil satu kartu secara a...0129Dalam pemilihan murid untuk lomba tari di suatu sekolah t...0143Tetangga baru yang belum anda kenal katanya mempunyai 2 a...0536Dalam sebuah kantong terdapat 6 bola hitam dan 4 bola mer...Teks videodisini kita memiliki soal sebuah kotak berisi 6 Bola merah 5 Bola Biru dan 4 bola putih kaki terlebih dahulu ya Ada 1 kotak 1 kotak isinya itu aku singkat 6 M 5 B dan 46 merah 5 Biru 4 putih dari kotak tersebut diambil 3 bola secara sekaligus secara acak. Tentukan peluang terambilnya bola berwarna semua merah B semua putih C berlainan dan D paling sedikit 2 Bola Biru di sini berarti kita ketahui bahwa 1 kotak itu ada ini ya Ada 15 bola Nah karena kotak tersebut diambil tiga bola secara sekaligus secara acak berarti nggak ada pengulangan nih. Maksudnya nggak ada bola yang dikembalikan kembali maka kita bisa menggunakan rumus kombinasi yaitu dengan rumus n c k atau n kombinasi k yaitu = n faktorial dibagi n min 3 faktorial dikali dengan K faktorial Nah berarti untuknya a dibilang kalau misalnya dimintanya itu adalah semua merah ya semua merah maka karena peluang itu rumusnya adalah N * A dibagi oleh NS masuknya enak tuh yang mau dituju yaitu sampel nya ya pergi seperti ini Nah untuk yang a sendiri nanya itu karena misalnya dibilangnya maunya merah maka kombinasinya itu akan menjadi seperti ini enaknya itu adalah 6 Bola merah kombinasi tiga Tanaman yang diambil dari bola merah nya itu ada 3 Nah kalau merahnya itu namanya 6 kombinasi 3 dibagi dengan MS yaitu ruang sampel yaitu adalah dari 15 bola ingin di ambil 3 biji seperti ini teman-teman makanya nanti hasilnya akan menjadi dari kalau 6 C3 itu adalah 6 faktorial dibagi oleh 6 dikurang 3 faktorial dikali dengan 3 faktorial lalu dibagi dengan 15 faktorial dibagi dengan 15 dikurang 3 faktorial 3 faktorial makanan di sini ya adalah 6 * 5 * 4 * 3 faktorial dibagi dengan 3 faktorial dikali dengan 3 faktorial 33 * 2 * 1 * 2 dengan 15 * 14 * 13 * 12 faktorial dibagi oleh 12 faktorial dikali dengan 3 faktorial * 2 * 1. Nah berarti nanti bisa kita nih ini dengan ini lalu ini chattingan ini ini cerewet dengan ini berarti 55 / 35 ya terus 14 / 2 adalah 7 maka nanti hasilnya Oh ya ini ini ya tapi nanti hasilnya itu adalah 5 x 4 adalah 20 dibagi oleh 5 * 7 * 13 = 455 kalau misalnya kita bagi 5 Sederhanakan lagi dibagi 5 semuanya maka menjadi 4 per 91. Nah kita lanjut yang bisa Jangan senyum ya Nah tadi kan kita udah ketahuan ya kalau misalnya ruang sampelnya itu Atau enaknya itu adalah 15 C3 karena dari 15 bola yang ada di satu Kota kita hanya memiliki 3 Berarti tadi nggak salah itu adalah 455 nah disini untuk yang B diminta adalah semua putih berarti kombinasinya itu adalah 4 cm3. Kenapa karena 3 bola putih karena semuanya ada tiga bola putih yang dipilih lalu bola putih itu ada 4 di dalam kotak penalti peluang yaitu adalah 4 C 3 dibagi dengan 15 C 3 dan 4 D 3 dan 4 faktorial dibagi oleh 4 dikurang 3 faktorial dikali 3 faktorial dibagi oleh 455 orang kita ketahui a ruang sampel berapa Nah maka di sini nanti hasilnya adalah Pea atau peluang atau PB aja kita ya di sini ya ganti Pipi itu akan menjadi seperti ini. 4 * 3 faktorial dibagi oleh 1 faktorial dikali 3 faktorial per 455 Maka nanti peluang yang di itu untuk adalah ini coret-coret 4 dibagi 1 dibagi 1 faktorial 11 ya 4 dibagi 14 per 455 naiknya adalah uangnya untuk yang c. Kita diminta yang berlainan nih. Berarti kita tahu ada 1 bola putih 1 Bola Biru dan 1 bola merah. Nah berarti nanti tetap sama saya juga sama 15 C 3 / 455 berarti nanti kayaknya atau yang mau dituju nya ini akan jadi seperti ini yaitu tinggal sekali aja misalnya nih bola merah itu ada 66 kali Bola Biru ada 5 kali lagi dengan bola putih ada 4 Nah berarti nanti 6 * 5 * 4. Maka hasilnya itu adalah 20 Nah berarti nanti peluang untuk yang ceweknya itu adalah Chan nct dibagi dengan n s dengan ruang sampel berarti 120 dibagi dengan 455 ya kan makan nanti hasilnya itu akan menjadi kita bagi kita Sederhanakan dibagi 5 maka akan jadi 24 dibagi 91 sandinya untuk yang D untuk yang di itu dibilang paling sedikit 2 Bola Biru Berarti boleh 2 Bola Biru berarti bisa seperti ini dua biru satu bisa juga 2 biru 1 putih dan bisa juga tiga biru karena dia bilangnya paling sedikit 2 Bola Biru berarti kalau bisa 3 Bola Biru bola hilang nah Jika sakit seperti ini berarti kita nanti MS juga tetap sama 15 J 3 k Na dan 15 bola diambil 3 maka hal 154-155 lalu selanjutnya nanti endingnya itu mengikuti yang udah kita tahu nih misalnya yang pertama itu adalah ada 2 Bola Biru dan 1 bola merah nah berarti nanti 2 Bola Biru itu kan berarti 5 c 2 dikali dengan untuk 1 bola merah nya berarti 6 C 1 maka selanjutnya dia kita harus hitung nih berarti untuk 5 C2 itu adalah kan lima faktor 5 dikurang 2 faktorial dikalikan dengan 2 faktorial ditambah dengan 6 faktorial dibagi dengan x 6 dikurang 1 faktorial dikali dengan 1 faktorial maka saya akan jadi 5 * 4 * 3 faktorial dibagi dengan 3 faktorial dikali dengan 2 * 1 * 2 faktorial ya lalu selanjutnya dikali dengan 6 faktor yaitu 6 * 5 faktorial dibagi dengan 5 faktorial dikali 1 faktorial 5 faktorial 3. Faktorial kita coret duanya ini kita cari 2 nah Berarti kasih 15 * 2 = 10 10 10 ya dikali dengan 6 dibagi 1 faktorial kan berarti 6 / 1 = 6, Maka hasilnya adalah 60 untuk yang 2 Bola Biru dan 1 merah Ada 60 cara Nah selanjutnya untuk yang 2 Bola Biru 1 bola putih maka juga sama akan menjadi 5 c 2 dikalikan dengan 1 bola putih itu adalah 4 C 1. Nah disini kita nggak tahu ya kalau misalnya 52 itu adalah hasilnya 10 berarti 341 adalah faktor bagi dengan 4 dikurang 1 faktorial dikalikan dengan 1 faktorial maka nanti hasilnya adalah 10 dikalikan dengan 4 * 3 faktorial dikalikan dengan 3 faktorial dikali 1 faktorial dibagi jadi 1 selanjutnya 4 dibagi 1 faktorial maka jadi 4 / 14 ya berarti 10 x 4 = 40 Nah untuk yang 3 Bola Biru semuanya batik peluangnya hanyalah caranya itu bicara ya bicara 3 Bola Biru Tentukan berarti hanya 5 C 3 berarti kan 5 dibagi oleh 5 dikurang 3 faktorial dikalikan dengan 3 faktorial berarti 5 * 4 * 3 faktorial per 2 faktorial dikalikan dengan 3 faktorial dicoret-coret 2 itu 2 * 2 * 1, maka dicoret dengan 4 maka x 2 maka hasil adalah 10 cara Wah berarti pulangnya kok tahu sih Ya peluangnya itu peluang dek itu kan berarti semuanya nih berarti 60 yang ini ditambah dengan yang ini 40 ditambah dengan 10 karena mereka merupakan Andy semua ya karena kan ini itu bisa 2 Bola Biru 1 bola Merah 2 Bola Biru 1 bola putih dan 3 3 nya adalah Bola Biru berarti dibagi dengan ruang sampel 455 Maka nanti peluang dirinya adalah 110 dibagi 45 jika dibagi 5 maka akan menjadi 22 per 91 jawabannya sampai jumpa di soal selanjutnyaSukses nggak pernah instan. Latihan topik lain, yuk!12 SMAPeluang WajibKekongruenan dan KesebangunanStatistika InferensiaDimensi TigaStatistika WajibLimit Fungsi TrigonometriTurunan Fungsi Trigonometri11 SMABarisanLimit FungsiTurunanIntegralPersamaan Lingkaran dan Irisan Dua LingkaranIntegral TentuIntegral ParsialInduksi MatematikaProgram LinearMatriksTransformasiFungsi TrigonometriPersamaan TrigonometriIrisan KerucutPolinomial10 SMAFungsiTrigonometriSkalar dan vektor serta operasi aljabar vektorLogika MatematikaPersamaan Dan Pertidaksamaan Linear Satu Variabel WajibPertidaksamaan Rasional Dan Irasional Satu VariabelSistem Persamaan Linear Tiga VariabelSistem Pertidaksamaan Dua VariabelSistem Persamaan Linier Dua VariabelSistem Pertidaksamaan Linier Dua VariabelGrafik, Persamaan, Dan Pertidaksamaan Eksponen Dan Logaritma9 SMPTransformasi GeometriKesebangunan dan KongruensiBangun Ruang Sisi LengkungBilangan Berpangkat Dan Bentuk AkarPersamaan KuadratFungsi Kuadrat8 SMPTeorema PhytagorasLingkaranGaris Singgung LingkaranBangun Ruang Sisi DatarPeluangPola Bilangan Dan Barisan BilanganKoordinat CartesiusRelasi Dan FungsiPersamaan Garis LurusSistem Persamaan Linear Dua Variabel Spldv7 SMPPerbandinganAritmetika Sosial Aplikasi AljabarSudut dan Garis SejajarSegi EmpatSegitigaStatistikaBilangan Bulat Dan PecahanHimpunanOperasi Dan Faktorisasi Bentuk AljabarPersamaan Dan Pertidaksamaan Linear Satu Variabel6 SDBangun RuangStatistika 6Sistem KoordinatBilangan BulatLingkaran5 SDBangun RuangPengumpulan dan Penyajian DataOperasi Bilangan PecahanKecepatan Dan DebitSkalaPerpangkatan Dan Akar4 SDAproksimasi / PembulatanBangun DatarStatistikaPengukuran SudutBilangan RomawiPecahanKPK Dan FPB12 SMATeori Relativitas KhususKonsep dan Fenomena KuantumTeknologi DigitalInti AtomSumber-Sumber EnergiRangkaian Arus SearahListrik Statis ElektrostatikaMedan MagnetInduksi ElektromagnetikRangkaian Arus Bolak BalikRadiasi Elektromagnetik11 SMAHukum TermodinamikaCiri-Ciri Gelombang MekanikGelombang Berjalan dan Gelombang StasionerGelombang BunyiGelombang CahayaAlat-Alat OptikGejala Pemanasan GlobalAlternatif SolusiKeseimbangan Dan Dinamika RotasiElastisitas Dan Hukum HookeFluida StatikFluida DinamikSuhu, Kalor Dan Perpindahan KalorTeori Kinetik Gas10 SMAHukum NewtonHukum Newton Tentang GravitasiUsaha Kerja Dan EnergiMomentum dan ImpulsGetaran HarmonisHakikat Fisika Dan Prosedur IlmiahPengukuranVektorGerak LurusGerak ParabolaGerak Melingkar9 SMPKelistrikan, Kemagnetan dan Pemanfaatannya dalam Produk TeknologiProduk TeknologiSifat BahanKelistrikan Dan Teknologi Listrik Di Lingkungan8 SMPTekananCahayaGetaran dan GelombangGerak Dan GayaPesawat Sederhana7 SMPTata SuryaObjek Ilmu Pengetahuan Alam Dan PengamatannyaZat Dan KarakteristiknyaSuhu Dan KalorEnergiFisika Geografi12 SMAStruktur, Tata Nama, Sifat, Isomer, Identifikasi, dan Kegunaan SenyawaBenzena dan TurunannyaStruktur, Tata Nama, Sifat, Penggunaan, dan Penggolongan MakromolekulSifat Koligatif LarutanReaksi Redoks Dan Sel ElektrokimiaKimia Unsur11 SMAAsam dan BasaKesetimbangan Ion dan pH Larutan GaramLarutan PenyanggaTitrasiKesetimbangan Larutan KspSistem KoloidKimia TerapanSenyawa HidrokarbonMinyak BumiTermokimiaLaju ReaksiKesetimbangan Kimia Dan Pergeseran Kesetimbangan10 SMALarutan Elektrolit dan Larutan Non-ElektrolitReaksi Reduksi dan Oksidasi serta Tata Nama SenyawaHukum-Hukum Dasar Kimia dan StoikiometriMetode Ilmiah, Hakikat Ilmu Kimia, Keselamatan dan Keamanan Kimia di Laboratorium, serta Peran Kimia dalam KehidupanStruktur Atom Dan Tabel PeriodikIkatan Kimia, Bentuk Molekul, Dan Interaksi Antarmolekul

Top1: Sebuah kotak berisi 6 bola merah ,5 bola biru , dan 4 bola putih.Dari . Answered by ### on Thu, 28 Jul 2022 23:40:51 +0700 with category toptenid.com. Q&A; Sebuah kotak berisi 6 bola merah 4 bola putih dan 5 bola biru sebuah bola diambil secara acak dari kotak tersebut. tentukan probalitas bahwa

lenii23 lenii23 Matematika Sekolah Menengah Atas terjawab • terverifikasi oleh ahli Kotak 1 berisi 4 bola hitam dan 6 bola putih. kotak 2 berisi 5 bola merah dan 4 bola putih dari kotak 1 diambil 3 bola dan dari kotak 2 diambil 4 bola. tentukan peluang terambilnya 3 bola putih dari kotak 1 dan 4 bola merah dari kotak 2. sama uraiannya Iklan Iklan acim acim PP1 x PM2= 6C3/10C3 x 4C4/9C4= 6!/3!3!/10!/7!3! x 1/9!/5!4!= 20/120 x 1/126= 1/6 x 1/126= 1/756 Iklan Iklan Pertanyaan baru di Matematika 1. Dua buah lingkaran masing-masing berjari-jari 10 cm dan 3 cm. Jika Panjang garis singgung persekutuan luar kedua lingkaran 24 cm, maka jarak kedua … pusat lingkaran adalah... A. 15 cm C. 20 cm B. 17 cm D. 25 cm​ cara sudun kebawah 436×24-875+653=​ agil mempunyai tiga buah jam weker, jam pertama berdering tiap 25 menit, jam kedua berdering tiap 5 menit, dan jam ketiga berdering tiap 10 menit. dal … am tiap berapa menitkah ketiga jam berdering bersama?fpb kpk cara​ cara sudun kebawah 436×24-875+653=​ cara sudun kebawah 436×24-875+653=​ Sebelumnya Berikutnya flKqFI.
  • 463rktbs72.pages.dev/311
  • 463rktbs72.pages.dev/122
  • 463rktbs72.pages.dev/239
  • 463rktbs72.pages.dev/309
  • 463rktbs72.pages.dev/25
  • 463rktbs72.pages.dev/250
  • 463rktbs72.pages.dev/160
  • 463rktbs72.pages.dev/191
  • 463rktbs72.pages.dev/153
  • sebuah kotak berisi 4 bola merah dan 6 bola putih